Some Recent Progress in the Applications of Niho Exponents

Nian Li

Faculty of Mathematics and Statistics Hubei University Wuhan, China

July 5, 2017

Niho Exponents

- 2 Cross Correlation Functions of Niho Type
- 3 Bent Functions From Niho Exponents
- 4 Cyclic Codes with Niho Type Zeros
- 5 Permutation Polynomials From Niho Exponents

Let p be a prime, n = 2m a positive integer and $q = p^m$. Let \mathbb{F}_q denote the finite field with q elements.

Niho Exponent

A positive integer d is called a Niho exponent (with respect to \mathbb{F}_{q^2}) if there exists some $0 \le j \le n-1$ such that

$$d \equiv p^j \pmod{q-1}$$

- Normalized form: j = 0, i.e., d = (q 1)s + 1.
- Generalized form: $d \equiv \Delta \pmod{q-1}$ for some integer Δ .

Cross Correlation Between an m-sequence and Its Decimation Sequence

The determination of the cross correlation between an m-sequence and its d-decimation sequence is a classic research problem.

Basic Notations:

- $Tr(\cdot)$ is the trace function from \mathbb{F}_q to \mathbb{F}_p .
- α is a primitive element of \mathbb{F}_q .
- ω is a *p*-th primitive root of unity.
- $s(t) = \text{Tr}(\alpha^t)$ is an *m*-sequence of period q 1.
- $s(dt) = \text{Tr}(\alpha^{dt})$ is the *d*-decimation sequences of s(t).

4 / 35

The periodic cross correlation function $C_d(\tau)$ between the sequences s(t) and s(dt) is defined for $\tau = 0, 1, 2, \cdots, q-2$ by

$$C_d(\tau) = \sum_{t=0}^{q-2} w^{s(t+\tau)-s(dt)} = \sum_{x \in \mathbb{F}_q} w^{\operatorname{Tr}(\alpha^{\tau} x - x^d)} - 1.$$

Main Research Problems

- Find decimation d such that $C_d(\tau)$ takes few values.
- Determine the value distribution of $C_d(\tau)$.

Known 3-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

No.	d-Decimation	Condition	Remarks
1	$2^{k} + 1$	$n/\gcd(n,k)$ odd	Gold, 1968
2	$2^{2k} - 2^k + 1$	$n/\gcd(n,k)$ odd	Kasami, 1971
3	$2^{n/2} - 2^{(n+2)/4} + 1$	$n \equiv 2 \pmod{4}$	Cusick et al., 1996
4	$2^{n/2+1} + 3$	$n \equiv 2 \pmod{4}$	Cusick et al., 1996
5	$2^{(n-1)/2} + 3$	$n \; odd$	Canteaut et al., 2000
6	$2^{(n-1)/2} + 2^{(n-1)/4} - 1$	$n \equiv 1 \pmod{4}$	Hollmann et al., 2001
7	$2^{(n-1)/2} + 2^{(3n-1)/4} - 1$	$n \equiv 3 \pmod{4}$	Hollmann et al., 2001

Remarks: (1) No. 5 is the Welch's conjecture; (2) Nos. 6 and 7 are the Niho's conjectures

Open Problem

Show that the table contains all decimations with 3-valued correlation function.

イロト 不得下 イヨト イヨト

Known 3-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

No.	d-Decimation	Condition	Remarks
1	$(p^{2k}+1)/2$	$n/\gcd(n,k)$ odd	Trachtenberg, 1970
2	$p^{2k} - p^k + 1$	$n/\gcd(n,k)$ odd	Trachtenberg, 1970
3	$2 \cdot 3^{(n-1)/2} + 1$	$n/\gcd(n,k)$ odd	Dobbertin et al., 2001
4	$2 \cdot 3^k + 1$	n 4k+1, $n odd$	Katz and Langevin, 2015

Remarks: (1) Nos. 1 and 2 are due to Helleseth for even n; (2) The result obtained by Xia et al. (IEEE IT 60(11), 2014) is covered by No. 1

Open Problems

• Show that the table contains all decimations with 3-valued correlation function for p>3.

Known 4-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

No.	d-Decimation	Condition	Remarks
1	$2^{n/2+1} - 1$	$n \equiv 0 \pmod{4}$	Niho, 1972
2	$(2^{n/2}+1)(2^{n/4}-1)+2$	$n \equiv 0 \pmod{4}$	Niho, 1972
3	$\frac{2^{(n/2+1)r}-1}{2^r-1}$	$n \equiv 0 \pmod{4}$	Dobbertin, 1998
4	$\frac{2^{n}+2^{s+1}-2^{n/2+1}-1}{2^{s}-1}$	$n \equiv 0 \pmod{4}$	Helleseth et al., 2005
5	$(2^{n/2} - 1)\frac{2^r}{2^r \pm 1} + 1$	$n \equiv 0 \pmod{4}$	Dobbertin et al., 2006

Remarks: (1) All are the Niho type decimations; (2) No. 5 covers previous four cases.

Conjecture (Dobbertin, Helleseth et al., 2006)

No. 5 covers all 4-valued cross correlation for Niho type decimation.

Known 4-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

No.	d-Decimation	Condition	Remarks
1	$2 \cdot p^{n/2} - 1$	$p^{n/2} \not\equiv 2 \pmod{3}$	Helleseth, 1976
2	$3^k + 1$	n=3k,k odd	Zhang et al., 2013
3	$3^{2k} + 2$	n=3k,k odd	Zhang et al., 2013

Remarks: (1) No. 1 is a Niho type decimation; (2) Nos. 2 and 3 are due to Zhang et al. if gcd(k,3) = 1 and due to Xia et al. if gcd(k,3) = 3.

Open Problem

Find new 4-valued $C_d(\tau)$ for any prime p.

Known 5 or 6-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{2^n}

No.	d-Decimation	Condition	Remarks
1	$2^{n/2} + 3$	$n \equiv 0 \pmod{2}$	Helleseth, 1976
2	$2^{n/2} - 2^{n/4} + 1$	$n \equiv 0 \pmod{8}$	Helleseth, 1976
3	$\frac{2^n - 1}{3} + 2^i$	$n \equiv 0 \pmod{2}$	Helleseth, 1976
4	$2^{n/2} + 2^{n/4} + 1$	$n \equiv 0 \pmod{4}$	Dobbertin, 1998

Remarks: (1) No. 1 was conjectured by Niho; (2) No. 3 is of Niho type if n/2 is odd.

Open Problem (Dobbertin, Helleseth et al., 2006)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (2^{n/2} - 1) + 1$.

Known 5 or 6-valued Correlation Function $C_d(\tau)$ over \mathbb{F}_{p^n}

No.	d-Decimation	Condition	Remarks
1	$(p^n - 1)/2 + p^i$	$p^n \equiv 1 \pmod{4}$	Helleseth, 1976
2	$(p^n - 1)/3 + p^i$	$p \equiv 2 \pmod{3}$	Helleseth, 1976
3	$p^{n/2} - p^{n/4} + 1$	$p^{n/4} \not\equiv 2 \pmod{3}$	Helleseth, 1976
4	$3^k + 1$	n=3k,k even	Zhang et al., 2013
5	$3^{2k} + 2$	n=3k,k even	Zhang et al., 2013

Remarks: (1) No. 1 is of Niho type if n/2 is odd; (2) Nos. 4 and 5 are due to Zhang et al. if gcd(k,3) = 1 and due to Xia et al. if gcd(k,3) = 3.

Open Problem (Dobbertin, Helleseth and Martinsen, 1999)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (3^{n/2} - 1) + 1$.

イロト 不得下 イヨト イヨト

Let k be a positive integer and ${\cal N}_k$ denote the number of solutions to

$$\begin{aligned} x_1 + x_2 + \dots + x_k &= 0, \\ x_1^d + x_2^d + \dots + x_k^d &= 0. \end{aligned}$$

Question: How to determine the values of N_k ?

Open Problem (Dobbertin, Helleseth et al., 2006)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (2^{n/2} - 1) + 1$.

Solved! (surprising connection with the Zetterberg code) by Xia, L., Zeng and Helleseth 2016 (IEEE IT, 62(12), 2016)

Open Problem (Dobbertin, Helleseth and Martinsen, 1999)

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (3^{n/2} - 1) + 1$.

Solved!

by Xia, L., Zeng and Helleseth 2017 (it is available on arXiv).

Future Work

Determine the cross correlation distribution of $C_d(\tau)$ for the Niho type decimation $d = 3 \cdot (p^{n/2} - 1) + 1$ for p > 3.

This case is much more complicated!

Bent functions have significant applications in cryptography and coding theory.

Walsh Transform

Let f(x) be a function from \mathbb{F}_{2^n} to $\mathbb{F}_2.$ The Walsh transform of f(x) is defined by

$$\widehat{f}(\lambda) = \sum_{x \in \mathbb{F}_{2^n}} (-1)^{f(x) + \operatorname{Tr}(\lambda x)}, \lambda \in \mathbb{F}_{2^n}.$$

Bent Function

A function f(x) from \mathbb{F}_{2^n} to \mathbb{F}_2 is called Bent if $|\widehat{f}(\lambda)| = 2^{n/2}$ for any $\lambda \in \mathbb{F}_{2^n}$.

イロト 不得下 イヨト イヨト

Problem Description

Let f(x) be a function from \mathbb{F}_{2^n} to \mathbb{F}_2 defined by

$$f(x) = \sum_{i=1}^{2^n - 2} \operatorname{Tr}(a_i x^i), a_i \in \mathbb{F}_{2^n}.$$

Then how to choose a_i and i such that f(x) is Bent?

Remarks

Known infinite classes of Boolean Bent functions:

- Monomial Bent: only 5 classes
- Ø Binomial Bent: only about 6 classes
- 9 Polynomial form: quadratic form, Dillon type and Niho type

Constructions of Bent Functions of Niho Type

Known Constructions of Niho Bent Functions

Table: Known Niho Bent Functions

No.	Class of Functions	Authors	Year
1	$\mathrm{Tr}_1^n(ax^{(2^m-1)\frac{1}{2}+1})$	_	_
2	$\operatorname{Tr}_{1}^{n}(ax^{(2^{m}-1)\frac{1}{2}+1}+bx^{(2^{m}-1)3+1})$	Dobbertin et al.	2006
3	$\operatorname{Tr}_{1}^{n}(ax^{(2^{m}-1)\frac{1}{2}+1}+bx^{(2^{m}-1)\frac{1}{4}+1})$	Dobbertin et al.	2006
4	$\operatorname{Tr}_{1}^{n}(ax^{(2^{m}-1)\frac{1}{2}+1}+bx^{(2^{m}-1)\frac{1}{6}+1})$	Dobbertin et al.	2006
5	$Tr_1^n(ax^{(2^m-1)\frac{1}{2}+1} + \sum_{i=1}^{2^{r-1}-1} x^{(2^m-1)\frac{i}{2^r}+1})$	Leander, Kholosha	2006

Remarks: (1) No. 1 is trivial; (2) No. 3 is covered by No. 5

Niho Type Bent Functions: Some Recent Results

Let n = 2m, p be a prime and $q = p^m$. Define

$$f(x) = \sum_{i=1}^{p^r - 1} \operatorname{Tr}_1^n(ax^{(ip^{m-r} + 1)(q-1) + 1})$$

Theorem (L., Helleseth, Kholosha and Tang, 2013)

- f(x) is Bent if p = 2 and gcd(r, m) = 1 (4-valued otherwise), and it is equivalent to the Leander-Kholosha's Bent functions.
- The proof (based on quadratic form) is self-contained and much simpler than the original one (by using Dickson polynomials and complicated techniques over finite fields).

Niho Type Bent Functions: Some Recent Results

Let n = 2m and 0 < r < m. Define

$$f(x) = \operatorname{Tr}(a_{2^{r-1}}x^{2^m+1} + \sum_{i=1}^{2^{r-1}-1} a_i x^{(2^m-1)(2^{m-r}i+1)+1})$$

Theorem (Budaghyan, Kholosha, Carlet, Helleseth, 2014/2016)

- **9** Up to EA-equivalence, any Niho Bent function has the above form.
- New Niho Bent functions obtained from quadratic and cubic o-polynomials.

Challenging problems: Determine the coefficients for o-polynomials of higher degree; or find new Niho Bent functions from other approach?

Let α be a primitive element of \mathbb{F}_{p^n} and $m_{\alpha^i}(x)$ denote the minimal polynomial of α^i over \mathbb{F}_p for $1 \leq i \leq p^n - 1$. Define

$$\mathcal{C}_{(d_1,d_2,\cdots,d_k)} = \langle m_{\alpha^{d_1}}(x)m_{\alpha^{d_2}}(x)\cdots m_{\alpha^{d_k}}(x)\rangle,$$

i.e., cyclic codes with generator polynomial $m_{\alpha^{d_1}}(x)m_{\alpha^{d_2}}(x)\cdots m_{\alpha^{d_k}}(x)$.

Research Topics

• Find $C_{(d_1,d_2,\cdots,d_k)}$ with optimal or good parameters;

② Determine the weight distribution of its dual.

Remark: Normally both of them are difficult when $k \ge 3$.

For k = 2, cyclic code $C_{(1,e)}$ has been well investigated:

Known Results about $C_{(1,e)}$

- p = 2: $C_{(1,e)}$ is optimal if and only if x^e is APN
 - proved by Carlet, Charpin and Zinoviev in 1998
 - subcode $\mathcal{C}_{(0,1,e)}$ was investigated by Carlet, Ding and Yuan in 2005
- 2 p > 3: $C_{(1,e)}$ cannot be optimal (minimal distance ≤ 3)
 - weight distribution if x^e is PN (Yuan, Carlet and Ding, 2006)
- $\ensuremath{\mathfrak{O}}$ Connection with the correlation distribution between m-sequences
 - proved by Katz in 2012

For p = 3, $C_{(1,e)}$ is optimal if it has parameters $[3^m - 1, 3^m - 1 - 2m, 4]$.

Known Results about $C_{(1,e)}$ for p = 3

- $\mathcal{C}_{(1,e)}$, $\mathcal{C}_{(0,1,e)}$ are optimal if x^e is PN (Carlet, Ding and Yuan, 2005)
- $\mathcal{C}_{(1,e)}$ is optimal if x^e is APN (Ding and Helleseth, 2013)
- $C_{(1,e,\frac{3^m-1}{2})}$ is optimal for some e (L.,Li,Helleseth,Ding and Tang,2014)
- weight distribution if x^e is PN (Yuan, Carlet and Ding, 2006)
- weight distributions if x^e is APN (Li, L., Helleseth and Ding, 2014)

A cyclic code C is said to have t nonzeros if its parity-check polynomial has t irreducible factors over \mathbb{F}_p .

Theorem (Li, Zeng and Hu, 2010)

Let n = 2m and $d_i = s_i(2^m - 1) + 1$ for i = 1, 2, 3. Then the weight distribution of the dual of $C_{(d_1, d_2, d_3)}$ is determined for the following cases:

•
$$(s_1, s_2, s_3) = (\frac{1}{2}, 1, 2^{m-1}).$$

•
$$(s_1, s_2, s_3) = (\frac{1}{2}, 1, 2^{m-2} + 1).$$

Remark: it has 3 Niho type nonzeros.

Theorem (Li, Feng and Ge, 2013)

Let n = 2m and $d_i = s_i(p^m - 1) + 1$ for i = 1, 2. Then the weight distribution of the dual of $C_{(d_1, d_2)}$ is determined for the following cases:

•
$$p = 2$$
• $(s_1, s_2) = (\frac{1}{2}, s_2). \ s_2 \neq \frac{1}{2}.$
• $(s_1, s_2) = (2^{k-1}t - \frac{t-1}{2}, 2^{k-1}t + \frac{t+1}{2}), \ k|m+1, \ \text{or} \ (k, 2m) = 1.$

• $(s_1, s_2) = (\frac{t+2}{4}, \frac{3t+2}{4}), \ t \equiv 2 \pmod{4}.$

Remark: it has 2 Niho type nonzeros and some of their results are not new!

Recent Result (Xiong and L., 2015)

Let n = 2m, h, f be integers and q be a prime power. Then the weight distribution of the dual of $C_{(\dots,d_i,\dots)}$ is determined for the following cases:

•
$$d_i = (ih+f)(q-1) + 2f$$
, $i = 0, 1, 2, \cdots, t$

•
$$d_i = (ih + \frac{f-h}{2})(q-1) + f$$
, $i = 1, 2, \cdots, t$

Main idea: Vandermonde matrix!

Remark: it has arbitrary number of Niho type nonzeros!

Recent Result (Xiong, L., Zhou and Ding, 2016)

Let n = 2m and $d_i = s_i(2^m - 1) + \Delta$. Then the weight distribution of the dual of $\mathcal{C}_{(\dots, d_i, \dots)}$ is determined for the following cases:

•
$$s_i = ih + \frac{\Delta}{2}, i = 0, 1, 2, \cdots, t$$

•
$$s_i = ih + \frac{\Delta - h}{2}, i = 1, 2, \cdots, t$$

where $gcd(\Delta, 2^m - 1) = 1$ and $h \not\equiv 0 \pmod{2^m + 1}$.

Main idea: Vandermonde matrix!

Remark: it has arbitrary number of Niho type nonzeros!

Problem of Weight distribution of C with Niho Exponents

Key Step: Let n = 2m, $d_i = s_i(2^m - 1) + 1$, $z_i \in \{z \in \mathbb{F}_{2^n} : z^{2^m + 1} = 1\}$ and $y_i \in \mathbb{F}_{2^m}$. Then, how to determine the number of solutions to

Future Problems

Weight distribution for some other special coefficient matrices?

2

26 / 35

Permutation Polynomial

A polynomial $f(x) \in \mathbb{F}_{q^2}[x]$ is called a permutation polynomial (PP) if the associated polynomial function $f : c \mapsto f(c)$ from \mathbb{F}_{q^2} to \mathbb{F}_{q^2} is a permutation of \mathbb{F}_{q^2} .

Application

- Coding Theory (Turbo codes; balanced component functions).
- Sequence Design (Welch's 3-valued conjecture; Helleseth's -1 conjecture).
- Cryptography (S-box; highly nonlinear function).
- Combinatorial Design (difference sets).

27 / 35

Known Permutation Binomials over \mathbb{F}_{q^2}

•
$$f(x) = x^r (x^{(q^2-1)/d} + a)$$
, Zieve 2009.

- 2 $f(x) = x^{r+s(q-1)} + ax^r$, Zieve 2013.
- **3** $f(x) = x^{s(q-1)+e} + ax^{(s-l)(q-1)+e}$, Tu, Zeng, Hu, Li 2013.

9
$$f(x) = x^{2q+3} + ax$$
, $p = 2$, Tu, Zeng, Hu 2014.

9
$$f(x) = x^{\frac{q}{4}(q+3)} + ax$$
, $p = 2$, Tu, Zeng, Hu 2014.

•
$$f(x) = ax + x^{3q-2}$$
, Hou, Lappano 2015.

•
$$f(x) = ax + x^{5q-4}$$
, Lappano 2015.

(a)
$$f(x) = x(x^{q+1} + a)$$
, Li, Qu, Chen 2015.

•
$$f(x) = x^r(x^{q-1} + a)$$
, Li, Qu, Chen 2015.

Known Permutation Trinomials over \mathbb{F}_{q^2} (q even)

- Linearized PPs, Lidl, Niederreiter 1997.
- 2 $f(x) = x + x^5 + x^7$, Dickson polynomial, $n \equiv 1, 2 \pmod{3}$.
- $\ \, { { 3 } } \ \, f(x) = x^{k(2^m+1)+3} + x^{k(2^m+1)+2^m+2} + x^{k(2^m+1)+3\cdot 2^m} \text{, Zieve 2013.}$
- $f(x) = x + x^{kq-k+1} + x^{k+1-kq}$, Ding, Qu, Wang, Yuan, Yuan 2014.
- $f(x) = x + ax^{2q-1} + a^{\frac{q}{2}}x^{q(q-1)+1}$, Ding et al. (a = 1); Li et al. 2015.
- $f(x) = ax + bx^q + x^{2q-1}$, Hou 2015.
- $f(x) = x + x^q + x^{\frac{q}{2}(q-1)+1}$, p = 2, Li, Qu, Chen 2015.
- **3** $f(x) = x + x^{q+2} + x^{\frac{q}{2}(q+1)+1}$, Li, Qu, Chen 2015.
- **2** Two n = 3m cases: Blokhuis et al. 2001 and Tu et al. 2014.

29/35

Niho Type Permutation Polynomials: Recent Results

New permutation trinomials over \mathbb{F}_{2^n} with the form

$$f(x) = x + x^{s(2^m - 1) + 1} + x^{t(2^m - 1) + 1},$$

where n = 2m and $1 \le s, t \le 2^m$.

Theorem (L. and Helleseth, 2016)

The polynomial f(x) defined as above is a permutation polynomial if

(*s*, *t*) =
$$(-\frac{1}{3}, \frac{4}{3})$$
;
(*s*, *t*) = $(3, -1)$;

(s,t) =
$$(-\frac{1}{3}, \frac{1}{3})$$

(s,t) = $(\frac{1}{5}, \frac{4}{5})$.

New permutation trinomials over \mathbb{F}_{2^n} with the form

$$f(x) = x + x^{s(2^m - 1) + 1} + x^{t(2^m - 1) + 1},$$

where n = 2m and $1 \le s, t \le 2^m$.

Theorem (L. and Helleseth, 2017)

The polynomial f(x) defined as above is a permutation polynomial if (s,t) = $(\frac{2^k}{2^k-1}, \frac{-1}{2^k-1})$, $gcd(2^k-1, 2^m+1) = 1$; or (s,t) = $(\frac{2^k}{2^k+1}, \frac{1}{2^k+1})$, $gcd(2^k+1, 2^m+1) = 1$.

Main idea: Linear Fractional Polynomial!

NL.	(1)		Due el la
INO.	(s,t)	Equivalent Pairs	Proved by
1	(k, -k)	$\left(\frac{\pm k}{2k\mp 1},\frac{\pm 2k}{2k\mp 1} ight)$	Ding et al.
2	(2, -1)	$(1, \frac{1}{3})$, $(1, \frac{2}{3})$	Ding et al.
3	$(1, -\frac{1}{2})$	$(1,rac{3}{2})$, $(rac{1}{4},rac{3}{4})$	Li et al.; Gupta et al.
4	$(-\frac{1}{3},\frac{4}{3})$	$(1,\frac{1}{5}), (1,\frac{4}{5})$	L., Helleseth; Li et al.
5	(3, -1)	$(\frac{3}{5},\frac{4}{5}), (\frac{1}{3},\frac{4}{3})$	L., Helleseth; Li et al.
6	$(-\frac{2}{3},\frac{5}{3})$	$(1,\frac{2}{7}), (1,\frac{5}{7})$	L., Helleseth
7	$(\frac{1}{5}, \frac{4}{5})$	$(1,-\frac{1}{3}), (1,\frac{4}{3})$	L., Helleseth; Li et al.
8	$(2, -\frac{1}{2})$	$(\frac{2}{3}, \frac{5}{6}), (\frac{1}{4}, \frac{5}{4})$	Li, Qu, Li, Fu
9	(4, -2)	$(\frac{2}{3}, \frac{5}{6}), (\frac{1}{4}, \frac{5}{4})$	Li, Qu, Li, Fu
10	$\left(\frac{2^k}{2^k-1}, \frac{-1}{2^k-1}\right)$	$(1, \frac{1}{2^k+1})$, $(1, \frac{2^k}{2^k+1})$	L., Helleseth
11	$\left(\frac{1}{2^{k}+1}, \frac{2^{k}}{2^{k}+1}\right)$	$(1, \frac{2^k}{2^k-1}), (1, \frac{-1}{2^k-1})$	L., Helleseth

Table: Known pairs (s,t) such that f(x) are permutation polynomials

Find permutation polynomials from Niho exponents with the form of

$$f(x) = x + ax^{s(p^m - 1) + 1} + bx^{t(p^m - 1) + 1} + \dots \in \mathbb{F}_{p^n}[x],$$

where n = 2m and $1 \le s, t \le p^m$.

Future Problems

- O More general results from Niho exponents?
- Permutation polynomials from generalized Niho exponents?
- Permutation polynomials for odd prime p.
- Oifferential property of PPs (not from Niho exponents).

The Kim function is defined by

$$f(x) = x^3 + x^{10} + ux^{24},$$

where u is a primitive element of \mathbb{F}_{2^6} .

An Interesting Fact

- **1** Using Kim function (which is APN)
- O Via simplex codes
- **3** Dillon et al. found the first APN permutation in even dimension!
- The obtained APN permutation is CCZ-equivalent to Kim function!

Note that: $3 = 10 = 24 \pmod{2^3 - 1}$, i.e., they are generalized Niho exponents!!!

Thank You!

Questions? Comments? Suggestions?